与无质量光子不同,弱相互作用媒介即W和Z玻色子吸收了Higgs分量从而变得有质量。由此,W、Z玻色子的纵向分量与Higgs密切相关:在LHC之前,通过对玻色子散射的幺正性分析,可以得到Higgs的质量必须在TeV之下,从而为LHC在TeV能级运行提供了物理动机;在Higgs粒子发现之后,通过探索高能区域的极化玻色子散射可以验证Higgs的幺正机制。对极化散射的探测,是大型强子对撞机最重要的物理目标之一。例如,美国著名理论物理学家,Sakurai奖获得者,费米实验室Chirs Quigg在他的文章“dream machines”中,将该课题列为Higgs粒子发现之后深入理解电弱对称破缺机制的十大关键问题之一。
北京大学高能物理实验组此次主导完成了同电荷W玻色子极化散射的世界首次测量,同时考虑了螺旋度本征态定义在同电荷W玻色子质心系与部分子对撞质心系下的极化分量。
当考虑同电荷W玻色子质心系时,利用CMS实验在2016-2018收集的137/fb的13TeV对撞数据,给出单纵向W玻色子极化散射的观测(预期)敏感度为2.3(3.1)倍标准偏差。同时,也对双纵向散射分量截面给予了限制。如图所示,测量结果为0.32+0.42-0.40fb,理论预言结果为0.44+-0.05fb。
此前,北大高能组应用深度学习技术对极化玻色子散射进行了研究。文章发表于Phys. Rev. D 99, 033004 (2019)及Phys. Rev. D 100, 116010 (2019)。相比传统结果,有效提升了观测敏感度。
在这批工作中,北大高能组肖杰、黄迁明、卢梦、李俊昊等同学,以及冒亚军教授、班勇教授、李强长聘副教授等作出了主要贡献。值得提出的是,北大高能物理CMS组近年在多玻色子领域做出了一系列有显示度的工作,包括LHC上第一个三规范玻色子测量[PRD 90, 032008 (2014)], 第一批矢量玻色子融合、散射工作的提出及完成[JHEP 11 (2016) 147;JHEP 06 (2017) 106; Phys. Lett. B 770 (2017) 380; JHEP 06 (2020) 076];首次在5倍标准偏差水平观测到了W和光子的散射(CMS-PAS-SMP-19-008);第一批多玻色子共振态的寻找[JHEP 08 (2014) 174;EPJC 76 (2016) 237;JHEP 05 (2018) 088]。这些工作得到国家自然科学基金委,科技部、北京大学、中国科学院及各兄弟院校的大力支持。